

CARBON CAPTURE AND STORAGE (CCS) OVERVIEW

Dr. Xiangshan Ma September 12, 2018

马湘山 博士

Cover image: Aerial view of Tomakomai CCS Demonstration carbon capture facilities located at Tomakomai City, Hokkaido, Japan. Image provided by JCCS.

The Global CCS Institute (GCCSI)

Carbon Capture and Storage (CCS) and CO₂ emission Reduction

The Current State of CCS

Obstacles to CCS Deployment

Changing the Narrative

The Global CCS Institute (GCCSI)

- International membership organisation.
- Offices in Washington DC, Brussels, London, Beijing and Tokyo. Headquarters in Melbourne.
- Our diverse international membership consists of:
 - o governments,
 - o global corporations,
 - o small companies,
 - \circ research bodies, and
 - NGOs.
- Specialist expertise covers the CCS/CCUS chain.

OUR VISION

CCS is an integral part of a low emission future

OUR MISSION To accelerate the deployment and commercial viability of CCS globally

OUR STRATEGIC IMPERATIVES

We're a Member led organisation We're a sensible, but bold, risk taker We're agile and we embrace change We're financially sustainable We expand & leverage the CCS community Our focus is on Valued & Impactful work

OUR IDENTITY We're recognised and sought out as the premier CCS body

MEMBER LED CCS COMMUNITY BOLD IMPACTFUL AGILE SUSTAINABLE

Resources on the Ground

Knowledge Resources

Annual CCS Status Report

CCS Facilities Database

CO2RE Database

Consulting Services

Fee for Service	Member Service
Applicability of Carbon Credits for CCS	Public Engagement at energy forum
Opportunities for Brown Coal in a Low-Carbon Economy	Critique of climate risk report
Transporting CO2 by Ship	Participate in CCS promotional video
Current State of CCS – Special Report to Government of Japan	Evaluate various monitoring techniques/protocols
Liability related to Off- Shore Storage of CO2	Provide input to CalEPA CCS protocol
Survey on CCS and ESG	Design and facilitate CCS conference

CREATING VALUE THROUGH KNOWLEDGE

CCS and CO₂ emission Reduction

Fossil fuel demand growing and reserves robust

Source: *IEA World Energy Outlook*, 2016 (New policies scenario)

Source: BP Statistical Review of World Energy 2017

CCS critical in portfolio of low-carbon technologies

CCS contributes 14% of <u>cumulative</u> reductions through 2060 in a 2DS world compared to 'current ambition' (Reference Scenario)

Source: International Energy Agency (2017), Energy Technology Perspectives 2017, OECD/IEA, Paris

CCS in industrial and power sectors in the 2DS

Source: data sourced from International Energy Agency (2017), Energy Technology Perspectives 2017, OECD/IEA, Paris

CCS deployment by country in the 2DS

Source: data sourced from International Energy Agency (2017), Energy Technology Perspectives 2017, OECD/IEA, Paris

Mitigation costs more than double without CCS

*Percentage increase in total discounted mitigation costs (2015-2100) relative to default technology assumptions – median estimate

Source: IPCC Fifth Assessment Synthesis Report, Summary for Policymakers, November 2014.

The Current State of CCS

18 large-scale facilities in operation

= 1Mtpa of CO₂ (area of circles proportional to capacity)

[#] Facilities in the Operating, In construction and Advanced development stages

The CCS project pipeline is shifting

	Early development	Advanced development	Construction	Operating	Total
North America	(-)	2	2	12	16
China	6	-	2	$\left(- \right)$	8
Europe	2	1	-	2	5
Gulf Cooperation Council	-	-	-	2	2
Rest of World*	3	1	1	1	6
Total	11	4	5	17	37

* Includes facilities in Australia, Brazil and South Korea.

North America dominates – 14 (of 21) facilities in operation or construction, China has most facilities in development, facility pipeline needs replenishment

Note: "Others" include Algeria, Brazil, China, Saudi Arabia, United Arab Emirates, Germany and France.

Source: Global CCS Institute estimates

Key CCS Developments in North America

Level of credit available for different combinations of CO₂ sources and uses IEA Analysis

Minimum size of eligible carbon capture plant by type (ktCO ₂ /yr)			Relevant level of tax credit in a given operational year (USD/tCO ₂)											
		Power plant	Other industrial facility	Direct air capture	2018	2019	2020	2021	2022	2023	2024	2025	2026	Later
Type of CO ₂ storage/use	Dedicated geological storage	500	100	100	28	31	34	36	39	42	45	47	50	pa
	Storage via EOR	500	100	100	17	19	22	24	26	28	31	33	35	lex link
	Other utilisation processes ¹	25	25	25	1 7 2	19	22	24	26	28	31	33	35	pul

¹ each CO_2 source cannot be greater than 500 kt CO_2 /yr

² Any credit will only apply to the portion of the converted CO_2 that can be shown to reduce overall emissions

Key CCS Developments in Europe

The Last 25 Years

37 large-scale CCS facilities combined CO₂ capture capacity of approximately 69 Mtpa*:

- 22 facilities in operation or construction (~37 Mtpa)
- 4 facilities in advanced development (~13 Mtpa)
- 11 facilities in earlier stages of development (~19 Mtpa)

37 Mtpa

The Next 25 Years

3,800 Mtpa of CO₂ captured and stored by 2040 (IEA 2DS)**

**Mtpa* = *million tonnes per annum*

**Source: International Energy Agency (2017), Energy Technology Perspectives 2017, OECD/IEA, Paris

Note: 2040 IEA 2DS data includes ~0.6 Mtpa "negative emissions" from BECCS

Obstacles to CCS Deployment

Solutions

#1 – Poor Project Economics	#2 – Perceptions, Risks, Uncertainties	#3 – Scale of Investment Required
Increase Income – EOR, other CO2 markets, price premium for low-carbon energy, sell technology	Standards, knowledge sharing, research	Smaller projects, modularity
Reduce Capital Cost – technology advances, subsidies/incentives, preferential financing	Communication, engagement	Industrial CCS
Reduce Operating Cost – tax incentives, production tax credit	Guaranteed purchase of electricity, portfolio standards	Carbon utilization
Price/limit on carbon emissions – Tax, cap/trade, emissions standards, permit requirement	Legislation, regulation	Loan guarantees

Policy should focus on reducing or eliminating the barriers to private sector investment Project Economics – policy measures that work

Project Economics – technology advances

Note: HHV = Higher Heating value, FOAK = First of a Kind, NOAK = Nth of a Kind.

Source: Michael Matuszewski. "DOE/NETL CO2 Capture R&D Program". 2014 NETL CO2 Capture Technology Meeting

Changing the Narrative

E&ENEWS

Will CCS Ever Work?

HUFFPOST

Donald Trump Promised 'Clean

Coal,' But It Doesn't Exist

The New York Times

Companies Struggle to Make Carbon Capture Viable

Carbon Capture May Be Too Expensive to Combat Climate Change

MORNING CONSULT

Congress, White House Drag Feet on Support for Carbon Capture Expansion

Bloomberg

Will Trump Make This \$7 Billion Clean-Coal Plant Irrelevant?

Carbon Capture: An Expensive Option For Reducing U.S. CO₂ Emissions

FINANCIAL TIMES

Carbon capture and storage — too little, too late, too expensive

Mashable

Michael Bloomberg calls 'BS' on clean coal technology

It is better to be <u>understood</u> than to be comprehensive

- Language "CCS" is not an easily identified term
- **Cost** widely held belief that CCS is too expensive
- Climate change
 - extends use of fossil fuel
 - Important option to address climate change
- **Safety** risks not well understood

Proven Affordable Versatile Essential

18 large-scale facilities 37+ million tonnes/yr

*Percentage increase in total discounted mitigation costs (2015-2100) relative to default technology assumptions - median estimate

Source: IPCC Fifth Assessment Synthesis Report, Summary for Policymakers, November 2014.

= 1Mtpa of CO₂ (area of circles proportional to capacity)

[#] Facilities in the Operating, In construction and Advanced development stages

Numerous authorities say we can't achieve 2DS without it

- 1. Paris **climate change targets** cannot be reached without -CCS没有 CCS, **巴黎协定2度目标**将无法实现
- 2. CCS is the only **proven clean technology** capable of decarbonizing major industry-CCS技术是主要工业行业唯一能**证明脱碳的清洁技术**
- CCS is creating a **new energy economy** of hydrogen production, bioenergy with CCS (BECCS), Direct Air Capture, and Carbon to Value representing a raft of CO₂ re-use applications-CCS正在创造一种新的氢 能源经济、生物能源与CCS结合(BECS)、直接空气捕集以及代表了 碳能产生价值的一系列CO₂再利用
- 4. CCS is **creating jobs**, sustaining communities and strengthening nations-CCS正在**创造就业**、维持社区和使得国家强大
- The storage of CO₂ is the most effective option available to reduce emissions and meet international climate change targets- CO₂封存是减 少排放和满足国际气候变化目标的最有效的选择

PARIS CLIMATE CHANGE TARGETS CANNOT BE MET WITHOUT CARBON CAPTURE AND STORAGE