

# High performance composite and polymer solutions for green, new mobility

Michael Rockel, Head of Greater China Sales & Marketing LANXESS High Performance Materials Business Unit

Chengdu, September 13

### LANXESS – a global specialty chemicals group LANXESS

Specialty chemicals company



- Spin-off from Bayer in 2004
- Specialty chemicals portfolio: chemical intermediates, specialty chemicals and plastics

### Global success story



Strategy of profitability and resilience



- 74 sites worldwide
- Approximately 19,200 employees in 25 countries
- Global sales of EUR ~9.7 billion in 2017
- Strengthening of leading position in medium-sized markets
- Consolidation in Europe, expansion in USA and Asia

# China is one crucial cornerstone of LANXESS global business



### LANXESS China

- 17 subsidiaries (including 3 joint ventures)
- 5 offices
- 9 R&D Centers
- 9 production sites
- Around 1,900 employees
- LANXESS' continuous investment in China demonstrates its firm confidence in the Chinese market and the long-term commitment



# High Performance Materials at a glance – Leading supplier of engineering plastics





# High Performance Materials – innovation building blocks





Pictures: LANXESS, BMW, Daimler, Intercontec, Vorwerk

### HPM is a core business of LANXESS



#### **HPM** China

- 4 offices (Shanghai, Guangzhou, Beijing and APAC HQ in Hong Kong) & 4 home office locations (Tianjin, Baoding, Shenzhen, Suzhou)
- 1+1 production sites 60KT + 25KT (Q2 2019)
- 1 R&D Center in Wuxi
- 1 CAE Development and Part Testing
- Around 180 employees
- LANXESS' continuous investment in China demonstrates its firm confidence in the Chinese market and the long-term commitment



New project in Changzhou Phase 1: One line, 25KT Investment: USD 25 mio Master plan: 130KT Startup: Q2 2019

### LANXESS e-mobility scenario Global view





#### Key takeaways

- Worldwide increased development of electrified powertrains to fit CO<sub>2</sub> targets after 2023
- MHEV as immediate action with lowest costs for slight CO<sub>2</sub> reduction
- Long-term focus on BEV and PHEV
- Still 83% of powertrains with ICE in 2035, but 90% electrified
- China being the leading driver of electric mobility

### **Challenges for e-Mobility**





### Material and technology development for emobility





- Lightweight applications
- Flame retardancy
- Thermal conductivity
- Electromagnetic shielding



### Lightweight technology toolbox LANXESS



#### **Motivation**

- Weight has significant influence on design of power train, brake system, body...
- Weight has significant influence on energy consumption
- Energy consumption influences the design and the costs for the battery system
- Consequent lightweight design has big potential for weight saving and cost reduction (less costs for battery invest – kWh)



Increasing requirements on strength (e.g. crash)

Plastics and composites – the key for electric mobility

# Technology and material solutions for lightweight design



#### High modulus grades



- High stiffness, glass fiber content up to 60%
- Conventional injection molding process
- Low wall thickness possible because of excellent flowability
- First frontend entirely made of polyamide (w/o metal inserts)

#### **Plastic metal hybrid**



- Best of both worlds: plastic stiffening (ribs) allows for lower metal sheet wall thickness
- Freedom of design, small tolerances, consistently high reproducible quality
- Functional integration (clips, fasteners etc.)
- Advanced hybrid technology with adhesive bond for even better performance

### Thermoplastic composites



- Continuous fiber with thermoplastic matrix – tailored to customer application
- Very high strength and energy absorption, high stiffness
- Functional integration by combination with injection molding process
- Short cycle times (~ 1 min), mass production
- No corrosion, simple recycling

### Material solutions for lightweight design Durethan<sup>®</sup> EasyFlow and XtremeFlow grades



### **Progression of key properties**



### Ideal for light weight applications

#### Polyamide compounds with increased flowability

- Longer flow path
- Reduced cycle time
- Less energy consumption
- Reduced costs
- Enhanced surface quality

### Highly reinforced polyamide compounds

- GF and/or CF loading
- Up to 60% GF results in high stiffness (modulus) and strength
- Various heat stabilizations available

# Selection of serial/development applications in LANXESS the alternative powertrain – Battery system

| Battery<br>housing:<br>Impact<br>Protection | <ul> <li>Durethan<sup>®</sup> BKV60H2.0EF DUS060 (PA 6 GF60)</li> <li>Weight reduction/ metal substitution</li> <li>Function is guaranteed in contact with electrolyte</li> <li>High mechanical strength (Pole Crush Test)</li> </ul>    |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Battery<br>housing:<br>Component            | <ul> <li>Durethan<sup>®</sup> BKV30FN04 DUSLHC (PA 6 GF30 FR)</li> <li>Mechanical forces &amp; creeping due to cell breathing</li> <li>High risk of contact corrosion: Low halide content</li> <li>V-0, halogen-free, CTI 600</li> </ul> |  |
| Cell<br>module:<br>Support<br>structure     | <ul> <li>Durethan<sup>®</sup> BKV45FN04 (PA 6 GF45 FR)</li> <li>Non-halogen FR system (UL94 V-0 at 0.4 mm)</li> <li>Low warpage and high dimensional stability to assure assembly</li> </ul>                                             |  |

# Material and technology development for e-mobility





- Lightweight applications
- Flame retardancy
- Thermal conductivity
- Electromagnetic shielding



# Fire protection in plastics – Increasing need for flame retardant polymers is expected



#### Challenge

- E-Mobility requires more electric parts
- Higher voltage (up to 800 V)
- Increasing fire safety requirements in electrical engineering, electronics and transportation sector
- Eco-toxicological properties gain importance



#### **Increasing FR requirements in vehicles**

# Main market segments for flame-retardant thermoplastics, today – and tomorrow?



### Adaption of E/E standards to e-mobility



 E/E: Main fire safety standards have major influence on the grade selection

- Main standards are:
- UL94V
- IEC 60695 (GWFI, GWIT)
- With the upcoming trend of E-mobility, fire safety standards are under discussion (e.g. UL-2580 Battery system)

\* FMVSS: federal motor vehicle safety standards

# LANXESS portfolio has dedicated answers to increasing need for flame retardant polymers



| <u>Challenge</u><br>Increasing demand<br>for FR properties        | <ul> <li>Increasing fire safety requirements in electrical engineering, electronics and transportation sector</li> <li>Eco-toxicological properties gain importance</li> <li>Compatibility of flame retardant system and polymer matrix to maintain mechanical properties and processing</li> </ul>             |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solution<br>Wide FR product<br>portfolio for nearly<br>every need | <ul> <li>Powerful product portfolio using effective state-of-the-art FR systems (halogen-free and halogen containing) with <b>no</b> red phosphorous</li> <li>Tailored solutions for diversity of applications</li> <li>Listing at international bodies, like UL, VDE etc. on top of RoHS conformity</li> </ul> |
|                                                                   | Non- Comparer - Paulos juna reto E263/0 3.) fire inhibiting gases                                                                                                                                                                                                                                               |

|            |          | Halogen     | Non-<br>halogen       |
|------------|----------|-------------|-----------------------|
| V Durethan | Unfilled | >           | <ul> <li>✓</li> </ul> |
| ۸_         | Filled   | <b>&gt;</b> | <ul> <li>✓</li> </ul> |
| V Pocan°   | Unfilled | ✓           | ✓                     |
| Λ_         | Filled   | ✓           | ✓                     |

| c                                                                                                                                    | Component - Plastics ()                          | uide intoj                                                                |                                                    |                                         |                                   |                                       |                                     | E245249                      | 3.) fire inhibiting gases                                |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|-----------------------------------|---------------------------------------|-------------------------------------|------------------------------|----------------------------------------------------------|
| Ļ                                                                                                                                    | ANXESS AG                                        |                                                                           |                                                    |                                         |                                   |                                       |                                     |                              | radical recombination decomposition of water             |
| C                                                                                                                                    | hempark Dormagen, B                              | u Hpm, Building F46, Donne                                                | gen 41538 DE                                       |                                         |                                   |                                       |                                     |                              | from minerals as Mg(OH)                                  |
| +                                                                                                                                    | KV25F30+(f1), I                                  | DP 2851/30H3.0 DU                                                         | S021+(f1)                                          |                                         |                                   |                                       |                                     |                              | halogenated FR oxygen additives decomoposition of N₂/NH₃ |
| F                                                                                                                                    | olyamide 65 (PA66)                               | glass reinforced, "DURE                                                   | THAN", furnished                                   | as pollets                              |                                   |                                       |                                     |                              | from melamine cyanurate.                                 |
|                                                                                                                                      |                                                  | Min Thk                                                                   | Flame                                              |                                         |                                   | RTI                                   | RTI                                 | RTI                          | etc.                                                     |
|                                                                                                                                      | Color                                            | (mm)                                                                      | Class                                              | HM                                      | HAI                               | Elec                                  | Imp                                 | Str                          | 3. heat                                                  |
|                                                                                                                                      | NC, BK                                           | 0.40                                                                      | V-0                                                | 0                                       | 2                                 | 130                                   | 105                                 | 115                          | coupling smoke                                           |
|                                                                                                                                      | ALL                                              | 0.75                                                                      | V-0                                                | 0                                       | 1                                 | 130                                   | 120                                 | 130                          | flammable Computation products                           |
|                                                                                                                                      |                                                  | 1.0                                                                       | V-0, 5VA                                           | Ũ                                       | 1                                 | 130                                   | 120                                 | 130                          | gases                                                    |
|                                                                                                                                      |                                                  | 3.0                                                                       | V-0, 5VA                                           | 0                                       | 1                                 | 130                                   | 120                                 | 130                          | 2 4                                                      |
|                                                                                                                                      | Comparative                                      | Tracking Index (CTI): 1                                                   |                                                    | incli                                   | ned Plane T                       | racking (IPT                          | 300 min a                           | at 18V                       | Lintumaccance                                            |
| Dielectric Strength (KVimm): - Volume Resistivity (10 <sup>4</sup> ohm-cm): -                                                        |                                                  |                                                                           |                                                    |                                         |                                   | 10 <sup>2</sup> ohm-cm                | ) intumescence                      |                              |                                                          |
|                                                                                                                                      |                                                  | tacking Rate (HVTR): 2                                                    | H                                                  | ligh Volt, Low I                        | Current Arc I                     | Resis (D495                           | 6.6                                 |                              | oam produced by polymer 5.                               |
|                                                                                                                                      |                                                  | ensional Stability (%): -                                                 |                                                    |                                         |                                   |                                       |                                     |                              | tumescence system 4.) surface passivation                |
| (1) - Subble for outdoor use with respect to exposure to Ultraviolet Light, Water Exposure and Immersion in accordance with UL 746C. |                                                  |                                                                           |                                                    |                                         |                                   | mension in a                          | blowing agent) Char formation by    |                              |                                                          |
| + - Material designations may be followed by suffix numbers and/or lefter(s) dending color.                                          |                                                  |                                                                           |                                                    |                                         |                                   |                                       | phosphoric acid or re               |                              |                                                          |
|                                                                                                                                      | ANSIUL 94 small-scale te<br>determining the Tamm | st data does not pertain to build<br>ability of plastic materials used in | to materials, furnishings<br>the components and pa | and related conte<br>ans of end-product | nts. ANSI'UL 94<br>devices and ac | 4 small-scale ter<br>poliances, where | st data is intend<br>the acceptabil | ted solely for<br>ity of the | 5.) matrix depolymerisation phosphorous                  |
|                                                                                                                                      | leport Date: 2010-05-1                           |                                                                           | combination is dete                                | mined by UL.                            |                                   |                                       |                                     |                              | depolymerisation<br>induced by FR system                 |
|                                                                                                                                      |                                                  |                                                                           |                                                    |                                         |                                   |                                       |                                     | ۹Ľ.,                         | and over by the system                                   |
|                                                                                                                                      | ast Revised: 2013-10-3                           | 8                                                                         | 0                                                  | 2015 UL LLC                             |                                   |                                       | 61                                  | - US                         |                                                          |

# Selection of serial applications with FR materials in the alternative powertrain



| Connectors<br>and cable<br>brackets        | <ul> <li>Durethan<sup>®</sup> BKV20FN01 (PA 6 GF20 FR)</li> <li>Non-halogen FR system (UL94 V-0 at 0.75 mm)</li> <li>High toughness and surface quality</li> <li>Chemical resistance according to LV124</li> </ul>                |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Housing<br>Battery<br>Management<br>System | <ul> <li>Pocan<sup>®</sup> AF4130 (PBT+ASA GF30 FR)</li> <li>UL94 V-0 at 0.75 mm (halogen containing)</li> <li>Low warpage</li> <li>Good mechanical properties (Snap Fits)</li> </ul>                                             |  |
| High-voltage<br>connectors                 | <ul> <li>Durethan<sup>®</sup> BKV45FN04 (PA 6 GF45 FR)</li> <li>Non-halogen FR system (UL94 V-0 at 0.4 mm)</li> <li>High mechanical performance (15900 MPa)</li> <li>Improved long-term heat stability and flowability</li> </ul> |  |

# Material and technology development for e-mobility





- Lightweight applications
- Flame retardancy
- Thermal conductivity
- Electromagnetic shielding



# Thermally conductive and electrically insulating polyamides



#### **Motivation**

- Higher demand & increasing density in electronics: Increasing use of thermally conducting plastics ~0.8-1.5 W/mK sufficient
- Restricted performance of electrical devices by low heat release in case of temperature sensitive components, e.g. battery cells
- Substitution of metals by thermally conductive plastics enable freedom of design and higher productivity



# Basic principles of thermally conductive plastics



### **Property dependence of the filling degree**



### **Thermally conductive Durethan grades**



Transient CFD analysis



Simulation of heat transmission





Exemplary temperature reduction depending on thermal conductivity

# Thermally conductive and electrically insulating LANXESS polyamides – LANXESS product portfolio

| Product description                                                                                                                                                                                                        | Thermal conductivity                                                                                                                                                               |              |                 |                         |                         |                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-------------------------|-------------------------|--------------------|--|
| <ul> <li>BTC65H3.0EF (PA 6 MD65)</li> <li>BTC75H3.0EF (PA 6 MD75)</li> <li>Injection molding</li> </ul>                                                                                                                    |                                                                                                                                                                                    | BKV<br>30    | BKV<br>60<br>EF | BTC6<br>5<br>H3.0<br>EF | BTC7<br>5<br>H3.0<br>EF | TP723-<br>620      |  |
| <ul> <li>Thermal conductivity (through-plane) up to 1,0<br/>and 1,4 W/mK, respectively</li> </ul>                                                                                                                          |                                                                                                                                                                                    | PA 6<br>GF30 | PA 6<br>GF60    | PA 6<br>MD65            | PA 6<br>MD75            | PA 6<br>MD68<br>FR |  |
|                                                                                                                                                                                                                            | Thermal conductivity                                                                                                                                                               |              |                 |                         |                         |                    |  |
| Product description                                                                                                                                                                                                        | Almost isotropic thermal<br>conductivity                                                                                                                                           |              |                 |                         |                         |                    |  |
| <ul> <li>TP723-620 (PA 6 MD68 FR)</li> </ul>                                                                                                                                                                               | 1,4 W/mK <sup>2)</sup> 1,7 W/mK <sup>2)</sup>                                                                                                                                      |              |                 |                         |                         |                    |  |
| <ul> <li>Thermal conductivity up to 2,5 W/mK (in-plane)</li> <li>UL94 V-0 at 0.75 mm</li> <li>Reflectivity &gt; 90% (at 450 nm)</li> <li>Copper- and halide-free heat stabilization (to avoid contact corrosion</li> </ul> | Housing<br>cross<br>section<br>• Fast heat dissipation<br>in all directions<br><sup>2)</sup> Durethan <sup>®</sup> BTC75H3.0EF,<br>special machine and tool<br>protection required |              |                 |                         |                         |                    |  |

# Selection of serial applications with FR materials in the alternative powertrain



| Air Blower<br>Component                              | <ul> <li>Durethan<sup>®</sup> BTC75H3.0EF, PA 6 with 75 % special mineral filler</li> <li>Improved thermal conductivity enables temperature reduction at electronic device by 8 °C / prevents overheating</li> <li>Operating temperature: - 40 °C to 80 °C, peak temperature: 120 °C</li> <li>Improved flowability</li> <li>Halide free formulation prevents contact corrosion</li> </ul> | For the second secon |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Passive<br>cooling<br>element in<br>HV-<br>connector | <ul> <li>Durethan<sup>®</sup> TP723-620, PA 6 with 68 % mineral filler</li> <li>Passive cooling element in direct contact with high voltage</li> <li>Electrically insulating</li> <li>Thermal conductivity &gt;1 W/mK</li> <li>Thin walls</li> <li>Fire protection, classification V-0</li> </ul>                                                                                         | Esource: Audi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# Material and technology development for e-mobility





- Lightweight applications
- Flame retardancy
- Thermal conductivity
- Electromagnetic shielding



# Innovations in the field of alternative powertrain – Electromagnetic shielding (EMS)



#### **Electromagnetic shielding of plastics**

#### **Drivers and trends:**

- Increasing miniaturization, use of digital assemblies
- Growing amount of sensitive electronic components

#### **Requirements**:

- Restrict electromagnetic interferences (EMI) to protect electronic devices
- Main applications for EMI
  - Battery system
  - Power electronics
  - E/E components



#### Duplication of EMI level every 3 years<sup>1</sup>

#### Frequency range of some EMI sources



#### EMI in the near- as well as far-field range

<sup>&</sup>lt;sup>1</sup> Estimation of Schaffner EMV AG

### Tepex<sup>®</sup> bridges the gap between high end composites and cost-effective production for high volume applications



#### Advantages

- Tailored fibre orientation
- High stiffness and strength
- Reliable processing enabled by fully automated manufacturing process of Tepex<sup>®</sup> sheets and parts manufacturing
- Combination with injection moulding
- Short part production cycle times (< 60 sec.)</li>
- Recycling
- Unlimited shelf-life



Cost effective thermoplastic composite solution for mass production



### What is so special about Tepex<sup>®</sup>?



Plain, semi-finished product (sheet) based on a <u>thermoplastic polymer (matrix</u>)

Reinforcement is a <u>fabric</u> or any kind of other <u>continuous fiber</u> made of glass, carbon (or aramid)



| Material is fully impregnated and consolidated, i.e.:                        |  |
|------------------------------------------------------------------------------|--|
| <ul> <li>the fibers are <u>completely coated</u> with the polymer</li> </ul> |  |

there is no remaining air inside the material

This is the difficult and important bit!

### Advantages

- Short cycle time (<60s)
- Highly reproducible process
- High functional integration possible

- Recycling easily possible
- No storage issue
- parts without post-processing after moulding

### Innovations in the field of alternative powertrain LANXESS Electromagnetic shielding with plastic materials

#### **Potential solutions**

#### Compounds

(carbon fibers, metal coated CF, CNT, steel or metal fibers, aluminum flakes)

#### Coatings

(thermoplastic resin containing graphite or metals, galvanization, PVD, flame spraying)

- Continuous fiber reinforced thermoplastics with EMS layer
- Advanced processing:
  - In-Mold-Decoration (IMD)
  - In-Mold-Labelling (IMD)
  - Insert-Molding (IM)

### **Innovative LANXESS material**



### Technology development projects – TEPEX<sup>®</sup> with electromagnetic shielding properties





\*EMS layer: Metal mesh (Cu, steel), metal film (Al, Cu, MuMetal), carbon fleece or shielding fleece

# Integration of composite sheet into the injection molding process





### Potential and short to mid term very promising applications for thermoplastic composites in Automotive



Car body / mounted parts



### LANXESS innovative solutions for alternative powertrains



Electrified vehicles implicate novel applications with complex requirements

Experience from thermoplastics in E/E and automotive industry applications can be transferred to automotive NEV products

Solutions already available e.g. for FR, TC... Investigations done: E.g. resistance against electrolyte, EMS

Already applications for e-powertrain in the market



Please contact us at: Polymers@lanxess.com

# LANXESS

**Energizing Chemistry**